skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Shanchieh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel framework for modeling attack scenarios in cyber-physical control systems: we represent a cyber-physical system as a constrained switching system, where a single model embeds the dynamics of the physical process, the attack patterns, and the attack detection schemes. We show that this is compatible with established results in hybrid automata, namely, constrained switching systems. The proposed attack modeling approach admits a large class of non-deterministic attack policies and permits the characterization of system safety as an asymptotic property. By calculating the maximal safe set, the resulting new impact metrics intuitively quantify the degradation of safety and the impact of cyber attacks on the safety properties of the system under attack. We showcase our results via an illustrative example. 
    more » « less
  2. Federal funding agencies and industry entities are seeking innovative approaches to address the ever-growing cybersecurity crisis. Increasingly, numerous cybersecurity thought leaders are indicating that Artificial Intelligence (AI)-enabled analytics can help tackle key cybersecurity tasks and deploy defenses. This half-day workshop, co-located with ACM KDD, sought to attain significant research contributions to various aspects of AI-enabled analytics for cybersecurity applications and deployable defense solutions from academics and practitioners. This workshop was a joint workshop of the 2021 AI-enabled Cybersecurity Analytics and 2021 International Workshop on Deployable Machine Learning for Security Defense. As such, we developed an interdisciplinary Program Committee with significant experience in various aspects of AI, cybersecurity, and/or deployable defense. 
    more » « less
  3. Many cyber attack actions can be observed but the observables often exhibit intricate feature dependencies, non-homogeneity, and potential for rare yet critical samples. This work tests the ability to model and synthesize cyber intrusion alerts through Generative Adversarial Networks (GANs), which explore the feature space through reconciling between randomly generated samples and the given data that reflects a mixture of diverse attack behaviors. Through a comprehensive analysis using Jensen-Shannon Divergence (JSD), conditional and joint entropy, and mode drops and additions, we show that the Wasserstein-GAN with Gradient Penalty and Mutual Information (WGAN-GPMI) is more effective in learning to generate realistic alerts than models without Mutual Information constraints. The added Mutual Information constraint pushes the model to explore the feature space more thoroughly and increases the generation of low probability yet critical alert features. By mapping alerts to a set of attack stages it is shown that the output of these low probability alerts has a direct contextual meaning for cyber security analysts. Overall, our results show the promising novel use of GANs to learn from limited yet diverse intrusion alerts to generate synthetic ones that emulate critical dependencies, opening the door to data driven network threat models. 
    more » « less
  4. Inherent vulnerabilities in a cyber network’s constituent machine services can be exploited by malicious agents. As a result, the machines on any network are at risk. Security specialists seek to mitigate the risk of intrusion events through network reconfiguration and defense. When dealing with rare cyber events, high-quality risk estimates using standard simulation approaches may be unattainable, or have significant attached uncertainty, even with a large computational simulation budget. To address this issue, an efficient rare event simulation modeling and analysis technique, namely, importance sampling for cyber networks, is developed. The importance sampling method parametrically amplifies certain aspects of the network in order to cause a rare event to happen more frequently. Output collected under these amplified conditions is then scaled back into the context of the original network to provide meaningful statistical inferences. The importance sampling methodology is tailored to cyber network attacks and takes the attacker’s successes and failures as well as the attacker’s targeting choices into account. The methodology is shown to produce estimates of higher quality than standard simulation with greater computational efficiency. 
    more » « less